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Abstract. More than a century ago, Norman Anning conjectured that it is possible
to arrange 48 points on a circle, such that all distances between the points are integer
numbers and are all among the solutions of the diophantine equation

x2 + xy + y2 = 72 · 132 · 192 · 312.

We shall obtain Anning’s conjecture as a consequence of a far more general geomet-
rical result.

Mathematics Subject Classification (2010): 11D09, 11H55, 52C10.
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1. A conjecture of Anning. In 1915, Norman Anning presented in [2] (see
Figure 1) an arrangement of 12 points on a circle whose mutual distances are
all integer numbers and miraculously all among the solutions of the diophantine
equation

x2 + xy + y2 = 72 · 132. (1)

Figure 1: Anning’s chordal dodecagon with integer sides and integer diagonals.

Quaestiones Mathematicae is co-published by NISC (Pty) Ltd and Informa UK Limited
(trading as the Taylor & Francis Group)
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In fact, there are exactly 13 different distances which occur between vertices of
Anning’s chordal dodecagon, namely 11, 19, 39, 49, 56, 65, 80, 85, 91, 96, 99, 104, 105.
Surprisingly, these numbers all show up in the list of integer solutions of (1), which
is, up to sign and order, (49, 56), (39, 65), (19, 80), (11, 85), (0, 91), (−11, 96),
(−85, 96), (−19, 99), (−80, 99), (−39, 104), (−65, 104), (−49, 105), (−56, 105). Sim-
ilarly (see Figure 2), Anning gave a corresponding configuration of 24 points on a
circle, whose 40 mutual distances appear as solutions of

x2 ± xy + y2 = 72 · 132 · 192.

Observe, that it actually suffices to consider only the plus sign in the equation as
we shall see later. Finally (see Figure 2), this led Anning to the conjecture, that
it is possible to arrange 48 points on a circle, such that the distances between the
points are all integral and among the solutions of the diophantine equation

x2 + xy + y2 = 72 · 132 · 192 · 312.

Figure 2: Anning’s conjecture.

At first glance, it is not clear how Anning found his geometric arrangments
of points on a circle and why there should be a relation to the integral solutions
of x2 + xy + y2 = 2. The aim of this paper is to provide a geometrical proof of a
very general result (Theorem 1), which covers in particular Anning’s conjecture.
Our proof is explicit and allows to actually construct such chordal polygons with
3 · 2n vertices. We will also show that not only all distances of the vertices occur
as solutions of a corresponding diophantine equation, but also vice versa, that
all positive integers which are solutions of the diophantine equation will occur as
distances between the vertices of the polygon (see Corollary 10).

Before we start, we should add a few remarks about plane integral point sets
in general: Configurations of points in the plane with integer mutual distance have
been studied by numerous authors in the past. Such a set is called plane integral
point set . The Erdős-Anning theorem states that an infinite number of points in
the plane can have mutual integer distances only if all points lie on a straight line.
This theorem has been proved in [3]. By using Pythagorean triangles it is easy to
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see that any finite number of points can be arranged in the plane such that all of
them except one are collinear, and such that all distances are integers. In [11], a
plane heptagon forming an integral point set is constructed such that, no three of
its vertices lie on a line, and no four on a circle. The problem of the minimum
diameter of n points in the plane in general position with integer mutual distances
is discussed in [12]. Plane integral point sets of n points on a circle are considered
in [9] and [8], the constructions, however, do not make contact to the diophantine
equation x2 + xy + y2 = 2. Now, our main result is the following:

Theorem 1. For any integer n ∈ N, one can arrange 3 · 2n points on a circle such
that their mutual distances are among the solutions of the diophantine equation

x2 + xy + y2 = p2
1 · p2

2 · . . . · p2
n , (2)

where the pi are different prime numbers of the form 6k + 1, k ∈ N.

Remark 2. Recall that by Dirichlet’s theorem there are infinitely many primes in
the arithmetic progression 6k + 1, k ∈ N.

An algebraic proof of a generalisation of Theorem 1, which, however, does
not reveal the geometric content of the problem and does not connect the dis-
tances of the points on the circle with the solutions of the diophantine equation
x2 + xy + y2 = 2, can be found in Bat-Ochir [4, Theorem 3], or in a less general
form in Harborth, Kemnitz, Möller [10, Theorem 1]. Before we prove Theorem 1,
we consider the algebraic and geometric aspect of Anning’s problem.

2. Algebraic point of view. In this section, we briefly discuss the diophantine
equation x2 +xy+y2 = m2. To keep the notation short, we introduce the following
terminology: For a pair of integers (a, b) we write (a, b)q to denote that a and b
satisfy the equation

a2 + ab+ b2 = q. (3)

Trivially, we have (a, b)q =⇒ (b, a)q and (a, b)q =⇒ (−a,−b)q. Moreover, by
Vieta’s formulas we have (a, b)q =⇒ (a,−(a + b))q. This leads to the following
observation:

Remark 3. The alternating group A4 operates on the set of solutions of (3). The
orbit of a solution (a, b) is

{±(a, b),±(b, a),±(a,−(a+ b)),±(b,−(a+ b)),±(−(a+ b), a),±(−(a+ b), b)}.

Now, for two pairs of integers (a, b) and (c, d), we define

(a, b) ∗ (c, d) := (ad− bc, ac+ bc+ bd).

Lemma 4. Let a, b, c, d, q1, q2 be integers such that (a, b)q1 and (c, d)q2 . Then(
(a, b) ∗ (c, d)

)
q1q2

,

in other words, we have

(ad− bc, ac+ bc+ bd)q1q2 .
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Proof. Let A := ad − bc and B := ac + bc + bd. It is elementary to check the
factorization

A2 +AB +B2 = (a2 + ab+ b2) · (c2 + cd+ d2) = q1q2. 2

Notice that we can exchange a and b, or c and d, or both, which gives us

(bd− ac, ac+ ad+ bc)q1q2 , (ac− bd, ad+ bc+ bd)q1q2 , (bc− ad, ac+ ad+ bd)q1q2 .

The following fact is just a consequence of Dickson [6, Exercises XXII.2, p. 80] (see
also Cox [5, Chapter 1]).

Fact 5. Let p1 < p2 < . . . < pn be primes, where for 1 ≤ i ≤ n we have pi ≡ 1
mod 6, and let m =

∏n
i=1 pi. Then the number of positive, integral solutions of

x2 + xy + y2 = m2

is 3n−1
2 (where (x, y) and (y, x) are counted as one solution). In particular, if n = 1

and p ≡ 1 mod 6, then the solution in positive integers 0 < x < y of

x2 + xy + y2 = p2

is unique.

Notice that by Lemma 4, if p ≡ 1 mod 6 and (a, b)p with a > b > 0, then
(a2 − b2, 2ab + b2)p2 , i.e., x = a2 − b2 and y = 2ab + b2 is the unique solution in
positive integers of the equation x2 + xy + y2 = p2.

In order to illustrate the previous results, we give a few examples:

• From (2, 1)7 we obtain (3, 5)72 .

• From (23, 120)(7·19)2 we obtain (23 · 13, 120 · 13)(7·13·19)2 .

• From (7, 8)13 and (23, 120)(7·19)2 we obtain (656, 1305)(7·13·19)2 .

3. Geometric point of view. Let ABC be an equilateral triangle with sides
of length m, and let K be its circumcircle. Furthemore, let P be a point on the
shorter arc over the chord AB (see Figure 3).
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A

C

B

P

α = 2π
3x y

m

m m

x+ y

K

Figure 3: Geometric interpretation of the equation x2 + xy + y2 = m2.

By the law of cosines we have

m2 = x2 + y2 − 2xy cos(α) = x2 + xy + y2. (4)

Vice versa, for each solution of x2 + xy + y2 = m2 in positive real numbers x, y
there is a point P on the shorter arc over AB with distances x and y from A and B,
respectively. Moreover, by Ptolemy’s theorem applied to the cyclic quadrilateral
ACBP , we have that the length of PC is x+y. In this sense, we can geometrically
read off from P the entire orbit of the solution (x, y) of (4) under A4 (see Remark 3).
We obtain:

Lemma 6. (a) Let K be the circumcircle of the equilateral triangle ABC of side
length |AB| = m. If P is a point on the smaller arc over AB (including A
and B) such that a = |PA| ∈ N, b = |PB| ∈ N, then (a, b)m2 . Moreover,
c := |PC| = a+ b ∈ N and (±a,∓c)m2 and (±b,∓c)m2 .

(b) Vice versa, let a, b be integers with (a, b)m2 . Then, if ab ≥ 0, there exists a
point P on the shorter arc over AB such that |PA| = |a| and |PB| = |b|. If
a < 0 < b and |a| < b, then there exists a point P on the shorter arc over AB
such that |PC| = b, |PA| = −a and |PB| = a + b. If a < 0 < b and |a| > b,
then there exists a point P on the shorter arc over AB such that |PC| = −a,
|PB| = b and |PA| = −(a+ b).

We now give a geometric interpretation of Lemma 4 by interpreting the algebraic
expressions there as lengths of chords which occur by concatenating two chords
(see Figure 4).
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Proposition 7. Suppose that the triangle with side lengths a, b, q1, where a, b <
q1, has circumradius q1√

3
and that the triangle with side lengths c, d, q2, where

c, d < q2, has circumradius q2√
3

(see Figure 4). Then, the circumcircle of the triangle

with side lengths aq2, cq1 and s = ac + ad + bc has radius q1q2√
3

. Moreover, if

cq1 < aq2, then the circumcircle of the triangle with side lengths aq2, cq1 and
s = ad− bc has the same radius q1q2√

3
.

scale by q2

''scale by q1
++

A B

P

a b

q1

q1q1

α

C

D

q2

q2

q2

Q
c

dβ

aq2

q1q2

q1q2q1q2

α

cq1

β

s

a
b

q1

q1q1

α

c

β q2

q2

q2
d

q1q2

q1q2q1q2

α

cq1

β

aq2
s

Figure 4: Adding solutions (top) and subtracting solutions (bottom).

Proof. The triangle with side lengths a, b, q1 corresponds to (a, b)q21 , and the
triangle with side lengths c, d, q2 corresponds to (c, d)q22 (see Figure 4, left and
middle). By scaling the left configuration in Figure 4 by q2, we get (aq2, bq2)q21q22 ,
and by scaling the middle configuration in Figure 4 by q1, we get (cq1, dq1)q21q22 .
In this way, we may consider the chords of length aq2 and cq1 in the circle of
radius r = q1q2√

3
. By concatenating these chords in this circle we can “add” (top

right in Figure 4) or “subtract” (bottom right in Figure 4) the chords. In order to
determine the length s of the resulting chord, we use the angles

α = 2 arcsin
aq2

2r
and β = 2 arcsin

cq1

2r
.
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We find

s = 2r sin
(α± β

2

)
= 2r

(
sin

α

2
cos

β

2
± sin

β

2
cos

α

2

)
= aq2

√
1−

(c√3

2q2

)2

± cq1

√
1−

(a√3

2q1

)2

=
a

2

√
4q2

2 − 3c2 ± c

2

√
4q2

1 − 3a2

=
a

2
(c+ 2d)± c

2
(a+ 2b).

For the plus sign, we obtain

s = ac+ ad+ bc

and for the minus sign

s = ad− bc. 2

The length s of the resulting chord which we obtained by adding and subtracting
chords of lengths aq2 and cq1 will be denoted by

aq2 ⊕ cq1, aq2 	 cq1.

Now we consider oriented angles α and β larger than 2π
3 . If, as in Figure 4,

a and b continue to denote the distance from P to A and B, respectively, and c
and b are the distances from Q to C and D, respectively, then the length of the
resulting chord s = aq2 ⊕ cq1 can be calculated in the same way as in the above
proof. The result in the various cases is summarized in the diagram shown in
Figure 5. In particular, we see that whenever a, b, c, d and q1, q2 are integers, s
is a solution of the diophantine equation x2 + xy + y2 = q2

1q
2
2 . For example, for

2π
3 ≤ α ≤ 2π, 0 ≤ β ≤ 2π

3 , α+β ≤ 2π, we have by Lemma 6 that a2− ab+ b2 = q2
1

and c2 + cd + d2 = q2
2 . Then, indeed, for s = ac + ad − bd and t = −(ac + bd) we

get s2 + st+ t2 = (a2 − ab+ b2)(c2 + cd+ d2) = q2
1q

2
2 .

Definition 8. A chordal (3·2n)-gon which is symmetric with respect to a rotation
with angle 2π/3 about its center and whose vertices have integer mutual distances
will be called Anning polygon. It is determined by a period of the sequence of
the lengths s1, s2, . . . , s2n of consecutive chords. We will encode such an Anning
polygon by An = 〈s1, s2, . . . , s2n〉m, where m is the side length of the equilateral
triangle with the same circumcircle as the polygon.

For example, the dodecagon in Figure 1 is an Anning polygon A2 = 〈11, 39, 19, 39〉91.
Notice that this encoding is not unique.
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β

α

2π

2π2π
3

2π
3

ac+ ad+ bc ac+ ad− bc

ac− ad+ bc

ac− ad− bc

−ac− ad+ bc

−ac+ ad− bc

−ac+ bd+ bc

Figure 5: Length of the chord s = aq2 ⊕ cq1.

4. Combining the algebraic and the geometric aspects. In this section,
we first prove Theorem 1 and then consider its refinements.

Proof of Theorem 1. We have to show that for any integer n ∈ N, one can arrange
3 · 2n points on a circle such that their mutual distances are among the solutions
of the diophantine equation

x2 + xy + y2 = p2
1 · p2

2 · . . . · p2
n ,

where the pi are different prime numbers of the form 6k + 1 (for some k ∈ N).
The proof is by induction on n. For n = 1, we choose a prime number p1 of

the form 6k + 1 (for some k ∈ N), for example, p1 = 7. Then we choose positive
integers s1, s2 such s1 < s2 < p1 and (s1, s2)p21 . Notice that by Fact 5, s1 and s2

are unique. For p1 = 7 we have s1 = 3 and s2 = 5. Consider the circumcircle of the
triangle with sides p1, s1, s2. By rotating this triangle in its circumcircle by 2π/3
and 4π/3, we get an Anning Hexagon A1 = 〈s1, s2〉p1 . In our example, shown in
Figure 6, the occurring distances in A1 = 〈3, 5〉7 are 3, 5, 7, 8 (see also Figure 3).

To illustrate the induction step, we first explicitly show the transition from
n = 1 to n = 2: First, we choose a prime number p2 of the form 6k + 1 (for
some k ∈ N) which is distinct from p1, say p2 = 31 (for p2 = 13 we actually
obtain Anning’s original configuration shown in Figure 1). Then we choose the
positive integers σ and τ such σ < τ < p2 and (σ, τ)p22 . For p2 = 31 we have
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7

7 7

3 5

3

5

3

5

8

7

Figure 6: Anning Hexagon. Six points on a circle with integer mutual distances.

σ = 11 and τ = 24. Now, for i = 1, 2 let s̄i := si · p2, and let σ̄ := σ · p1 and
τ̄ := τ · p1. Notice that we have (s̄1, s̄2)p21·p22 and (σ̄, τ̄)p21·p22 . Moreover, we obtain
two Anning Hexagons A1 and A ′1 with the same circumcircle where A1 is encoded
by 〈s̄1, s̄2〉p1·p2 , and A ′1 is obtained from A1 by a rotation through α, where

α := 2 arcsin
σ̄
√

3

2p1p2
= 2 arcsin

σ
√

3

2p2
.

With a slight abuse of notation we encode A ′1 by

σ̄ ⊕ 〈s̄1, s̄2〉p1·p2 .

For p1 = 7 and p2 = 31 we have s̄1 = 3 · 31, s̄2 = 5 · 31, and σ̄ = 11 · 7. The two
Anning Hexagons A1 and A ′1 are illustrated in Figure 7:

Claim 1. The 12 vertices of the two hexagons A1 and A ′1 are pairwise distinct.

Otherwise, there would be two points of A1 such that the distance between these
two points is σ̄ = σp1 < p1p2. We show that this is impossible: Let s̄ with
0 < s̄ < p1p2 be the distance between two points of A1. Then s̄ = sp2 and there
exists an integer t such that 0 < t < p1 and (s, t)p21 . In particular, we have p1 - s,
and since the primes p1 and p2 are distinct, p1 - sp2 = s̄. But since p1 | σ̄, this
shows that s̄ 6= σ̄.

Claim 2. The distance x between any two of the 12 vertices is among the integral
solutions of x2 + xy + y2 = p2

1p
2
2.

To see this, let P and Q be two of the 12 points. If P and Q both belong to the
same Anning Hexagon, then, by construction, the distance between P and Q is an
integral solutions of x2 + xy + y2 = p2

1p
2
2. If P is a vertex of A1 and Q a vertex of

A ′1 , then there is a vertex P ′ on A1 which, when rotated through α, becomes Q.
In particular, the distance between P ′ and Q is σ̄ = σp1. The distance between
P ′ and P is an integer ap2. Thus, we get that the distance x between P and Q is
ap2 ⊕ σp1, and hence among the integral solutions of x2 + xy + y2 = p2

1p
2
2.
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7 · 31

7 · 31 7 · 31

3 · 31 5 · 31

3 · 31

5 · 31

3 · 31

5 · 31

7 · 31

7 · 31 7 · 31

α

σ̄

Figure 7: On the left: Anning Hexagon A1. On the right: Anning Hexagon A1

(dotted) and Anning Hexagon A ′1 (dashed) obtained from A1 by rotation angle α.
Together, the vertices of A1 and A ′1 form an Anning Dodecagon A2.

The Anning Dodecagon which we obtain in this way can be encoded by
〈s1, s2, s3, s4〉p1·p2 , where the si’s are the lengths of the chords between the consec-
utive vertices of A2 over the chord of length p1p2.

For the general induction step, assume that for some pairwise distinct primes
p1, . . . , pn of the form 6k + 1 we have already constructed an Anning (3 · 2n)-gon
An, which is encoded by 〈s1, s2, . . . , s2n〉p1·...·pn . Now, let pn+1 be a prime of the
form 6k + 1 (for some k ∈ N) which is distinct from p1, . . . , pn, and choose the
positive integers σ and τ such σ < τ < pn+1 and (σ, τ)p2n+1

. For 1 ≤ i ≤ 2n, let

s̄i := si · pn+1 and let σ̄ := σ · p1 · . . . · pn. Then we consider the two Anning
(3 · 2n)-gons

〈s̄1, s̄2, . . . , s̄2n〉p1·...·pn+1
and σ̄ ⊕ 〈s̄1, s̄2, . . . , s̄2n〉p1·...·pn+1

.

As above, it follows that the vertices of these two Anning (3 · 2n)-gons are distinct.
Their union is therefore a set of 3 · 2n+1 points on a circle, forming an Anning (3 ·
2n+1)-gon. Indeed, as before, it follows that mutual distances of the points are
among the solutions of the diophantine equation

x2 + xy + y2 = p2
1 · . . . · p2

n+1 ,

which completes the proof. 2

The concrete calculation yields the following Anning 48-gon with p1 = 7, p2 =
13, p3 = 19, p4 = 31, which is encoded by

〈2976, 5096, 6141, 5096, 2976, 1225, 6479, 3535,

4199, 5096, 1389, 5096, 4199, 3535, 6479, 1225〉7·13·19·31.

434



A geometric representation of integral solutions

This proves Anning’s original conjecture.
We can also compute the Anning 96-gon with p1 = 7, p2 = 13, p3 = 19, p4 = 31,

p5 = 37, which is encoded by

〈5863, 39463, 91377, 18753, 188552, 32643, 45325, 110112,

39463, 149195, 39463, 110112, 45325, 32643, 188552, 18753,

91377, 39463, 5863, 149513, 90520, 98192, 32643, 18753,

136648, 52032, 136648, 18753, 32643, 98192, 90520, 149513〉7·13·19·31·37.

In an Anning polygon, one can actually read off all positive, and hence, by Lemma 6,
all solutions of the corresponding diophantine equation. First we consider the case
of positive solutions:

Proposition 9. Let m = p1 · . . . · pn be a product of pairwise distinct primes of
the form 6k + 1 and let 〈s1, . . . , s2n〉m be the code of an Anning (3 · 2n)-gon A
constructed in the proof of Theorem 1. Then for any integers a, b with 0 < a, b < m
such that a2 + ab+ b2 = m2 there are three points P,Q,R on A such that a, b are
the distances PQ and QR, respectively.

Proof. By Fact 5, there are 3n−1
2 positive, integral solutions a < b of a2 +ab+b2 =

m2. For positive integers n, let S+
n := 3n−1

2 . Then S+
1 = 1, and with an easy

calculation we obtain
S+
n+1 = 3 · S+

n + 1 .

The proof is now by induction on n: For n = 1, S+
1 = 1, i.e., there is a unique

integral solution 0 < a < b < m of a2 +ab+ b2 = m2. Now, a and b are the lengths
of two sides of the Anning Hexagon constructed in the proof of Theorem 1.

For the induction step, let P0, . . . , P2n be 2n+1 consecutive points of an Anning
(3 · 2n)-gon An, and for 0 ≤ i < j ≤ 2n let

si,j := PiPj .

Let An := {si,j < m : 0 ≤ i < j ≤ 2n} and assume that card(An) = S+
n and that

for any integers a, b with 0 < a, b < m and a2 + ab+ b2 = m2 we have {a, b} ⊆ An.
Furthermore, let pn+1 be a prime of the form 6k+ 1 such that pn+1 - m. As in the
proof of Theorem 1, let 0 < σ, τ < pn+1 be such that (σ, τ)p2n+1

, let σ̄ := σ ·m, and

for 0 ≤ i < j ≤ 2n let
s̄i,j := si,j · pn+1.

Scaling An by the factor pn+1, we obtain a (3 · 2n)-gon A ′n, where P ′0, . . . , P
′
2n are

the 2n + 1 consecutive points of A ′n which correspond to P0, . . . , P2n , and by a

rotation of A ′n through α = 2 arcsin σ
√

3
2pn+1

, we obtain a (3 · 2n)-gon A ′′n with 2n + 1

consecutive points Q0, . . . , Q2n , where for all 0 ≤ i ≤ 2n we have

P ′iQi = σ̄

(see Figure 8).
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Figure 8: The points P ′k and Qk.

Let us define

Ān := {s·pn+1 : s ∈ An}, Ān⊕σ̄ := {s̄⊕σ̄ : s̄ ∈ Ān}, Ān	σ̄ := {s̄	σ̄ : s̄ ∈ Ān}.

By a similar argument as in the proof of Theorem 1, it follows that

card(Ān) = card(Ān ⊕ σ̄) = card(Ān 	 σ̄),

and that the sets Ān, Ān ⊕ σ̄, Ān 	 σ̄, and {σ̄} are pairwise disjoint. For the
sake of simplicity, let us assume that σ̄ < min(Ān) — the general case can be
handled similarly. Now, we compute the distances between any two distinct points
of {P ′0, . . . , P ′2n , Q0, . . . , Q2n}: We already know that for 0 ≤ i ≤ 2n, P ′iQi = σ̄.
Furthermore, for 0 ≤ i < j ≤ 2n we have

• either P ′iP
′
j = m or P ′iP

′
j ∈ Ān,

• either QiQj = m or QiQj ∈ Ān,

• either P ′iQj ≥ m or P ′iQj ∈ Ān ⊕ σ̄,

• either P ′jQi ≥ m or P ′jQi ∈ Ān 	 σ̄.

Finally, we have that

S :=
{
AB : A,B ∈ {P ′0, . . . , P ′2n , Q0, . . . , Q2n} and AB < m

}
=

Ān ∪ (Ān ⊕ σ̄) ∪ (Ān 	 σ̄) ∪ {σ̄},

which shows that card(S ) = 3 · card(An) + 1, and therefore,

card(S ) = 3 · S+
n + 1 = S+

n+1.

This completes the induction step and the proof. 2
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Corollary 10. Let m = p1 · . . . · pn be a product of pairwise distinct primes of
the form 6k + 1 and let 〈s1, . . . , s2n〉m be the code of an Anning (3 · 2n)-gon A

constructed in the proof of Theorem 1. Then there are 3n+1−1
2 positive integers

a which occur as a solution of the diophantine equation a2 + ab + b2 = m2. For
every such integer a, there are two vertices P,Q of A with distance a, and no other
distances occur. More precisely, if (a, b) is an integer solution of a2 +ab+ b2 = m2,
then there are three vertices P,Q,R on A such that |a|, |b| are the distances PQ
and QR, respectively, and PR = m.

Proof. According to Fact 5, there are 3n−1
2 positive integer solutions (x, y) with

0 < x < y < m of a2 + ab + b2 = m2. With each such pair (x, y) there is also
the solution (−x, x + y) with x + y > m. If, on the other hand, for x > m we
have a2 + ab + b2 = m2, then also (−y, x + y) is a solution, where 0 < −y < m,
0 < x+y < m. Hence, with each pair of integer solutions (x, y) with 0 < x < y < m
of a2 + ab + b2 = m2, there are exactly three positive integer values x, y, x + y
occurring as solutions of the equation, hence a total of 3 · 3n−1

2 . Last but not least,
there is the trivial solution (m, 0), hence m is also a positive value occurring as a

solution, which gives a final total of 3 · 3n−1
2 + 1 = 3n+1−1

2 .
The fact that for every integer solution (x, y) of a2 + ab + b2 = m2 we have a

triangle in A with side lengths |x|, |y|,m follows from Proposition 9 together with
Lemma 6. 2

We close this discussion with the following observation.

Proposition 11. Let x, y be a positive integer solution of x2 + xy + y2 = m2,

m ∈ N, and K a circle with radius mn−1
√

3
, 2 ≤ n ∈ N. Then the n endpoints

A1, . . . , An of a chain of n − 1 chords of length xmn−2 in K are pairwise distinct
and have integer mutual distances which are solutions of x2 + xy + y2 = m2n−2.

Figure 9 shows the construction with m = 7, x = 5 for n = 5 points in a circle of

radius 74
√

3
. The length of the four chords is 5 · 73.

Proof of Proposition 11. By construction, the n endpoints in the chain of chords
have integer mutual distances

xmn−2, xmn−2 ⊕ xmn−2, . . . , xmn−2 ⊕ . . .⊕ xmn−2︸ ︷︷ ︸
n− 1 summands

.

It remains to show that the chain can never close. In particular, we have to show

that α = arcsin x
√

3
2m is incommensurable with respect to π. We have α = arcsin(

√
r)

for r = 3x2

4m2 = 3x2

4(x2+xy+y2) ∈ Q. It is known (see [13]) that for 0 ≤ r ≤ 1 rational, α

is a rational multiple of π if and only if r ∈ {0, 1
4 ,

1
2 ,

3
4 , 1}. Since in our case we have

0 < r < 3
4 we only need to check the values r ∈ { 1

4 ,
1
2}. From 3x2

4(x2+xy+y2) = 1
4 , it

follows that y = −2x or y = x, which is both not possible. From 3x2

4(x2+xy+y2) = 1
2

it follows that y = 1
2 (−x±

√
3x) /∈ N, which is also excluded. 2
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Figure 9: Five points on a circle with integer mutual distance.

We can extend the finite chain of points Ai in Proposition 11 to an infinite
sequence A1, . . . , An, . . . As we have seen in the proof of Proposition 11, the cen-
tral angle α over the chord of length xmn−2 is incommensurable with respect to
π. Hence, by Weyl’s equidistribution theorem [14], the points Ai are uniformly
distributed on the circle. The mutual distance of points Ai and Aj , i < j, is an
integer by Proposition 11 if j − i < n. If, on the other hand n ≤ j − i, then
|Ai − Aj |mj−i−n+1 is an integer, again by Proposition 11. Thus, the mutual dis-
tance of points Ai in the sequence is always rational. Hence, if q ∈ Q, we can
rescale the circle K of radius mn−1/

√
3 by the factor q/mn−1 and obtain a final

corollary (see also [7, Theorem 65, p. 229] and [1]):

Corollary 12. Let C be a circle with radius q√
3

for some q ∈ Q. Then, C

contains a dense set of points with rational mutual distances.
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